The function SetModelParameters
is used to set model parameters for iSC.MEB.
Arguments
- obj
An iSCMEBObj object.
- beta_grid
An optional vector of positive value, the candidate set of the smoothing parameter to be searched by the grid-search optimization approach, defualt as a sequence starts from 0, ends with 5, increase by 0.2.
- maxIter_ICM
An optional positive value, represents the maximum iterations of ICM (6 by default).
- maxIter
An optional positive value, represents the maximum iterations of EM (25 by default).
- epsLogLik
An optional positive vlaue, tolerance vlaue of relative variation rate of the observed pseudo log-loglikelihood value, defualt as '1e-5'.
- verbose
An optional logical value, whether output the information of the ICM-EM algorithm.
- int.model
An optional string, specify which Gaussian mixture model is used in evaluting the initial values for iSC.MEB, default as "EEE"; and see
Mclust
for more models' names.- init.start
An optional number of times to calculate the initial value (1 by default). When init.start is larger than 1, initial value will be determined by log likelihood of mclust results.
- Sigma_equal
An optional logical value, specify whether Sigmaks are equal, default as
FALSE
.- Sigma_diag
An optional logical value, specify whether Sigmaks are diagonal matrices, default as
TRUE
.- seed
An optional integer, the random seed in fitting iSC.MEB model.
- coreNum
An optional positive integer, means the number of thread used in parallel computating (1 by default).
- criteria
A string, specify the criteria used for selecting the number of clusters, supporting "MBIC", "MAIC", "BIC" and "AIC" ("MBIC" by default).
- c_penalty
An optional positive value, the adjusted constant used in the MBIC criteria (1 by default).
Examples
data(iSCMEBObj_toy)
#> Warning: data set 'iSCMEBObj_toy' not found
iSCMEBObj_toy <- SetModelParameters(iSCMEBObj_toy)
iSCMEBObj_toy@parameterList
#> $npcs
#> [1] 15
#>
#> $pca.method
#> [1] "APCA"
#>
#> $reduction.name
#> [1] "pca"
#>
#> $platform
#> [1] "Visium"
#>
#> $beta_grid
#> [1] 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6
#> [20] 3.8 4.0 4.2 4.4 4.6 4.8 5.0
#>
#> $maxIter_ICM
#> [1] 6
#>
#> $maxIter
#> [1] 25
#>
#> $epsLogLik
#> [1] 1e-05
#>
#> $verbose
#> [1] TRUE
#>
#> $int.model
#> [1] "EEE"
#>
#> $init.start
#> [1] 1
#>
#> $Sigma_equal
#> [1] FALSE
#>
#> $Sigma_diag
#> [1] TRUE
#>
#> $seed
#> [1] 1
#>
#> $coreNum
#> [1] 1
#>
#> $criteria
#> [1] "MBIC"
#>
#> $c_penalty
#> [1] 1
#>